
Chinese Language Parsing with
Maximum-Entropy-Inspired Parser

Heng Lian
Brown University

Abstract
The Chinese language has many special characteristics that make parsing difficult.
The performance of state-of-the-art parser is much worse than that for the English
language, with an f-score about 10% below that of English. We present the result
of a maximum-entropy-inspired parser [3] on Penn Chinese TreeBank 1.0 and 4.0,
achieving precision/recall of 78.6/75.6 on CTB1.0 and 79.1/75.0 on CTB 4.0. We
also apply the MaxEnt reranker [4] on the 50 best parses and get about 6% error
reduction. The parser is also applied directly to unsegmented sentences and also
achieves state-of-the-art performance.

1 Introduction

Parsing is an important step in natural language understanding. The output from
a parser can be regarded as a low-level preprocessing towards the ultimate goal of
letting computers understand human language. While the parsing has been applied
successfully on the English language [3, 5, 8], achieving an average precision/recall of
nearly 90%, there are few results reported on Chinese. Besides the lack of high-quality
treebanks that are required for training the parser, the characteristics of Chinese
language itself poses some problems that is not seen in English.

In this work, we apply the maximum-entropy-inspired parser proposed in [3] to the
Penn Chinese Treebank [10]. In section 2, we review the maximum-entropy-inspired
parser in [3]. In section 3,the MaxEnt reranker [4] is used to improve the performance
of the 50-best parser. In section 4, we show how the maximum-entropy-inspired parser
can be applied on the unsegmented sentences. Section 5 presents the experimental
result. And finally, we conclude in Section 6.

2 Maximum-Entropy-Inspired Parser

The parser used in the experiment is Charniak’s maximum-entropy-inpsired parser
[3] and the main points are reviewed here.

Like most other successful parsers, we start with a generative model p(π, s), where
π is the parse tree for a sentence s. The way that a parse tree is generated is as
follows. We start from the tree root S (meaning Sentence), and use the context-free
grammar for branching. Each expansion is assigned a probability, and the probability
of a tree would be the product of the probabilities of all expansions that generate the
given sentence. We seek the parse that maximizes the probability p(π, s) for the given
sentence s. We assign probability to each expansion L → ∆Lm . . . L1MR1 . . . Rn∆,

where ∆ is the stop symbol and M is the constituent that is the head of this expansion.
We assume the Markov model. In the zero order markov model, this is simply

p =
∏

i

p(Li|L) · p(M |L) ·
∏

i

p(Ri|L)

And if we want higher order Markov property, we can, for example, additionally
condition L2 on L1 and M . The 3rd order Markov model is used in the experiment.

The above way of assigning probabilities makes a complete model, but it does
not work well in practice, since it does not take into account the history(parent,
grandparent) or the lexical information. So you end up assigning to each rule the
probability that might look like

p(r) = p(t|l, H) · p(h|t, l, H) · p(e|l, t, h, H)

, where r is the expansion rule, l is the left hand side of r, h is the head word and t is
its tag, e is the right hand side of the expansion rule, and H represents other history
information.

The maximum-entropy approach uses carefully designed features to represent each
conditional probability. For each conditional probability that appears in the model,
the maximum-entropy model specifies that it is of the form

p(x|y) =
1

Z(y)
eλ1(x,y)f1(x,y)+...+λm(x,y)fm(x,y)

where fi is the feature , and λi is the weight associated with it, and Z(y) is the so-called
partition function that normalizes the probability. The maximum-entropy parser has
been developed in [8]. Charniak [3] takes a different approach by noticing that the
condition probability specified by the maximum-entropy model is of the product form
p(x|y) = h0(x, y)h1(x, y) . . . hm(x, y). Actually, any conditional probability can be
written in product form. As a simple example,

p(A|B, C) = p(A)
p(A|B)

p(A)

p(A|B, C)

p(A|B)

The formula as it stands above is just a tautology since the numerator of one factor
cancels the denominator of the succeeding factor. But consider the case where one has
a factor that is conditioned on a large number of events, say, p(A|B,C,D,E,F)

p(A|B,C,D,E)
. Remember

that these probabilities need to be estimated from the training data, and conditioning
on a large number of events will cause the sparse data problem, since it is unreasonable
to assume that the joint event A∩B∩C∩D∩E∩F will appear a sufficient number of
times in the training data to make the estimate accurate. In such cases, you want to
condition on less events by keeping only the most relevant ones. So we want to change
p(A|B,C,D,E,F)
p(A|B,C,D,E)

to, say, p(A|B,C,F)
p(A|B,C)

, and thus the estimation would be more accurate.
Of course, strictly speaking, now we don’t have exact equality in the above display.

But arguably, one can assume it is not far from equality. Throwing out normalizing
constant also sometimes appears in a slightly different framework in computer vision
literature to reduce computational burden [9]. And by conditioning on fewer events,
we can hope to alleviate the problem of sparse data.

3 MaxEnt Reranker

Machine learning technique is recently used to improve the performance of a parser
[6]. We use the reranker in [4] which seems to give better results. In order to use
the reranker, the modified version of the maximum-entropy-inspired parser must be
used which produces 50 parses for each sentence with their respect probability. The
reranker tries to assign a new probability to each one of these 50 parses. Additional
features are used for this task and the probability is defined through

log
p(π1)

p(π2)
=

exp{θ · f(π1)}
exp{θ · f(π2)}

where f is the vector of features that are used in the reranker and θ is the vector of
weights that need to be fitted, π1 and π2 are just 2 parses among the 50 best produced
by the parser. For the training data, 10-fold cross-validation is used to compute the
50-best parses for each sentence s in the training set. And we train the reranker to
select the best parse according to the f-score of the 50-best parses. (The best parse
selected by the reranker need not be the correct parse, because the 50-best parses
may not include the correct parse.) After fitting the parameter θ, the reranker is
applied on the 50 best parses for the test sentences, and select the one parse with
highest probability. This is the same as selecting the parse with highest θ · f .

In practice, a penalty term J(θ) = c||θ||2 must be used to prevent overfitting. So
the final objective function that need to be minimized during training is

−
∑

i

log pθ(π
b
i) + J(θ)

, where πb
i is the best parse among the 50 best according to the f-score. There are

a large number of features selected during training and that really slows down the
reranker. Automatic feature selection can be achieved by using in the penalty term
L1 norm of θ instead of the L2 norm J(θ) = c||θ||1, but this possibility is not explored
in this experiment.

4 Character-based Parsing

One major difference between Chinese and most western languages is that the words
in Chinese is not delimited by white-spaces. There has been significant research on
Chinese word segmentation. In this work, we directly apply the maximum-entropy-
inspired parser on the treebank by first transforming the treebank as stated in the
following.

We convert the original parse tree into a tree in which the terminals consist of a
single character instead of words. For any tag X in the original Treebank, we add
4 additional tags: Xf, Xl, Xm, and Xs. Xf is the tag for the first character of a
multi-character word, Xl is the tag for the last character of a multi-character word,
Xm is the tag for the characters in between. Finally, we use Xs as the tag for a
single-character word. Now the original tags becomes non-terminals in the new tree.

After transforming the training parse trees in this way, we can then directly apply
the parser on the transformed treebank and everything goes through as before.

5 Experimental Result

We use both CTB1.0 (3485 sentences in total) and CTB4.0(12334 sentences in total)
in the experiment. The treebank is divided into training set, test set, and development
test set with the same splitting as in [1]. The development set is used in the EM
algorithm to compute the weights for the expected-frequency interpolation weights of
conditional probabilities [2]. Final results are summarized in table 1. For comparison,
the results in [1] are reproduced in table 2. We can see that the our parser performs
marginally better in all cases. The reranker further increases the f-score by about
1.4%(table 3). For the character-based experiment, the result is compared with [7],
which is the only other character-based parser we found.

6 Conclusion

We have reported the results we get by applying the maximum-entropy-inspired parser
on the Penn CTB. The performance we observe is better than previously obtained
results. The MaxEnt reranker on the 50-best parser gives slightly better performance
but requires much more additional computation time. Also, the treebank is converted
so that the parser can be applied in a character-based approach, so the word segmen-
tation task is subsumed under the framework of parsing. Character-based parsing is
an important problem that current algorithms cannot produce satisfactory result on,
and deserves more research effort. The overall result is significantly worse than that
on the English treebank. Hopefully the availability of a higher quality tagging and
bracketing treebank would lead to more encouraging results.

Appendix A

Here we list a few changes that need to be done in order for the maximum-entropy-
inspired parser to work on the Chinese Treebank.
1. There are sentences in the Chinese Treebank that consist of 2 sub-sentences , so
the bracketing looks like ((IP ...) (IP ...)). The code needs to be changed in order
to read in this kind of trees.
2. The end character of a Chinese word is used to guess the POS if the word is not
seen in the training set. Since the treebank files are GB coded, we should use a string
to store the Chinese character instead of char.
3. Chinese has a different punctuation system and that needs to be changed whenever
punctuation is used in the program. This include ccInd.C, tree noopenQl/r in tree-
HistSf.C/edgeSubFns.C/fhSubFns.C, scorePunctuation() in InputTree.C, finalPunc()
and effEnd() in ChartBase.C, ccInd() in Edge.C

Treebank ≤ 40 words
LR LP F

1.0 79.9 81.9 80.9
4.0 77.5 81.4 79.4

all sentences
LR LP F

1.0 75.6 78.6 77.1
4.0 75.0 79.1 77.0

Table 1: Parsing results of the maximun-entropy-inspired parser.

Treebank ≤ 40 words
LR LP F

1.0 78.0 81.2 79.6
4.0 76.9 81.1 78.9

all sentences
LR LP F

1.0 74.4 78.5 76.4
4.0 74.7 79.0 76.8

Table 2: Parsing result from Dan Bikel’s parser.

Treebank Parser Result Reranker Result

1.0 77.1 78.4
4.0 77.0 78.4

Table 3: Reranking results on Charniak 50-best parses. Only the f-score is reported
here.

Treebank LR LP F

1.0 68.8 76.2 70.7
4.0 67.6 71.7 69.6

Table 4: Parsing results of the maximum-entropy-inspired parser on unsegmented
sentences

Treebank Parser LR LP F

1.0 This Report 77.8 79.7 78.8
1.0 Fung04 76.1 74.4 75.2

Table 5: Parsing result of the maximum-entropy-inspired parser on unsegmented
sentences, compared to Fung’s result. The numbers reported consider POS-tagged
words to be constituents.

4. The code in trainRs.C assumes that there are at least 500 sentences for the EM
algorithm, which is not always available for small treebank.
5. I also implemented a different headFinder.C, using the head finding rule in [1].
6. In CTB, the punctuation is tagged with PU, it would be better to use the actual
punctuation as the tag, as in the English treebank.

References

[1] Bikel, D. 2004. On the Parameter Space of Lexicalized Statistical Parsing Models.
Ph.D Thesis, University of Pennsylvania

[2] Charniak, E. 1996. Expected-frequency interpolation. Department of Computer
Science, Brown Univerisity, Technical Report CS96-37, 1996

[3] Charniak, E. 2000. A maximum-entropy-inspired parser. In The Proceedings of
the North American Chapter of the Association for Computational Linguistics,
132-139

[4] Charniak, E. and Johson, M. Coarse-to-fine n-best parsing and MaxEnt discrim-
inative reranking.

[5] Collins, M. 1997. Three generative lexicalized models for statistcal parsing. In
Proceedings of the 35th Annual Meeting of the ACL. 16-23.

[6] Collins, M. 2000. Discriminative reranking for natural language parsing. In Ma-
chine Learning: Proceedings of the Seventeenth International Conference (ICML
2000), 175-182

[7] Fung, P. and Ngai, G. et al. 2004. A maximum entropy Chinese parser augmented
with transformation-based learning. In ACM Transactions on Asian Language
Processing, 3(2), 159-168, 2004

[8] Ratnaparkhi, A. 1999. Learning to parse natural language with maximum en-
tropy models. Machine Learning 34(1999), 151-175

[9] Tappen, M. and Freeman, W et al. 2002. Recovering intrinsic images from a
single image. MIT AI Lab Technical Report 2002-015, 2002.

[10] Xia, F. and Palmer, M. et al. 2000. Developing guidelines and ensuring con-
sistency for Chinese text annotation. In Proceedings of the 2nd International
Conference on Language Resources and Evaluation Athens, 2000

